

Volatile Organic Compounds in Pesticides

Randy Segawa

February 13, 2003

elor

Agenda

- Background
- Method for Estimating VOC Emissions
- Amount of Pesticide VOC Emissions Inventory
- Uncertainties in Emission Estimates
- Next Steps

VOCs and Air Pollution

- Volatile organic compounds (VOC) and nitrogen oxides (NOx) react with sunlight to form the air pollutant ozone
- Ozone causes respiratory irritation and illnesses; state standard 0.09 ppm for 1-hour
- Many pesticide active and inert ingredients are VOCs
- The Department of Pesticide Regulation (DPR) and the Air Resources Board (ARB) develop plans and take actions to estimate and reduce VOC emissions from pesticides

3

epr

Sources of VOCs

- Numerous sources of VOCs such as vehicles, manufacturing, consumer products, agriculture
- Relative contribution of the sources varies with area and year
- San Joaquin Valley has highest contribution from agricultural sources; top sources in 1999:
 - 1) Livestock wastes
 - 2) Light duty passenger vehicles
 - 3) Light and medium duty trucks
 - 4) Oil and gas production
 - 5) Agricultural pesticides

State Implementation Plan

- As required by the Clean Air Act, ARB and Air Pollution Control Districts (APCD) develop State Implementation Plans (SIP) to reduce VOCs and NOx
- 1994 SIP requires DPR to reduce VOC emissions from pesticides by 20% between 1990 and 2005 in 5 nonattainment areas

Method for Estimating VOCs

- DPR maintains an inventory of VOC emissions from agricultural and commercial structural applications of pesticide products
- VOC emission from a pesticide product is:
 emission = %VOC in product x amount of product

7

elor

Estimating %VOC in Products

- In 1994, DPR requested %VOC (emission potential) data for all agricultural and structural products
- Emission potential for each product determined by one of four methods:
 - Lab test (thermogravimetric analysis, TGA)
 - Water/Inorganic subtraction
 - Estimated from confidential statement of formula
 - Default value

Default Emission Potentials

- DPR has estimated emission potentials for 27% of the 11,000+ products included in the inventory by TGA, water/inorganic subtraction, or CSF.
- Remaining 73% of the products are assigned a default value based on formulation category
 - Old Default: highest TGA value
 - New Default: median TGA value
 - Highest value used to encourage submission of data
 - Median value used to obtain best estimate of emissions

9

elor

Default Emission Potentials (%)

Formulation Category	New	Old
DUST/POWDER	1.53	59.7
EMULSIFIABLE CONCENTRATE	39.15	98.7
FLOWABLE CONCENTRATE	4.80	95.8
GRANULAR/FLAKE	3.70	20.3
OIL	3.47	3.90
PELLET/TABLET/CAKE/BRIQUET	5.18	8.2
PRESSURIZED PRODUCTS	100	100
SOLUBLE POWDER	1.15	5.3
SOLUTION/LIQUID (READY-TO-USE)	7.30	99.9
WETTABLE POWDER	1.85	9.2
SUSPENSION	5.71	9.4
DRY FLOWABLE	1.02	5.8
LIQUID CONCENTRATE	5.71	97.3

Estimating Amount of Product

- VOC emission from a pesticide product is:
 emission = emission potential x amount of product
- Amount of product determined from pesticide use reports
- Pesticide use reports contain information on
 - Product applied
 - Amount applied
 - Date of application
 - Location of application
 - Commodity or site treated

11

epr

Pesticide Use Reports (PUR)

- Since 1990, all agricultural pesticide applications must be reported to the county agricultural commissioner
- Partial reporting of structural, industrial, institutional, and other uses
- Ag commissioners transfer the data to DPR. DPR compiles and maintains a PUR database
- PUR database contains approximately 2 million records for each year

Emission Inventory Calculations

- Using emission potential data and PUR data, VOC emissions from agricultural and commercial structural applications calculated statewide for all years beginning with 1990 base year.
- Each year of inventory updated annually based on most recent PUR data and emission potential data; approximately 1 year lag
- Inventory focuses on:
 - May Oct (peak ozone period) for each year
 - 5 nonattainment areas

13

elor

Emission Inventory

- Sacramento Metro Nonattainment Area
- San Joaquin Valley Nonattainment Area
- Southeast Desert Nonattainment Area
- Ventura Nonattainment Area
- South Coast Nonattainment Area

2001 Sacramento Emissions Pesticide inventory comprised of 90% agricultural 10% commercial structural 27% fumigants Products with highest contribution contain Metam-sodium Molinate Methyl bromide Chlorpyrifos Cypermethrin

epr2001 San Joaquin Valley Emissions

- Pesticide inventory comprised of
 - 98% agricultural
 - 2% commercial structural
 - 52% fumigants
- Products with highest contribution contain
 - Metam-sodium
 - Dichloropropene
 - Methyl bromide
 - Chlorpyrifos
 - Oxyfluorfen

2001 Southeast Desert Emissions Pesticide inventory comprised of 96% agricultural 4% commercial structural 83% fumigants Products with highest contribution contain Metam-sodium

Methyl bromideDichloropropeneGibberellins

- Hydrogen cyanamide

2001 Ventura Emissions Pesticide inventory comprised of - 99.7% agricultural - 0.3% commercial structural - 88% fumigants Products with highest contribution contain - Methyl bromide - Dichloropropene - Metam-sodium - Chlorpyrifos - Chloropicrin

Summary of Emission Inventory

- 2001 emissions meet the 2005 goal in 3 nonattainment areas: Sacramento Metro, San Joaquin Valley, and South Coast
- 2001 emissions do not meet the 2005 goal in 2 nonattainment areas: Southeast Desert and Ventura
- All 5 nonattainment areas must meet the 2005 goal in 2005
- VOC emissions parallel pesticide use
- Fumigants are major contributors in all nonattainment areas

25

elor

Uncertainties in Emission Inventory

- Uncertainties in pesticide use
- Uncertainties in emission potentials
- Other uncertainties
- Effects of uncertainties

Uncertainties in PUR

- Approximately 5% of the PUR records contain errors
- Uncertain compliance in reporting
- Likely greater number of errors and lower compliance in early 1990s

27

elor

Uncertainties in Emission Potentials

- Emission potentials are unknown for 73% of the products, comprising 20% of use in 1990, and 16% of use in 2001
- Inventory may include emission potential errors or inappropriate values; metam-sodium and sodium chlorate recently revised
- Emission potentials may not indicate actual emission rates in the field

Other Uncertainties

- Limited data available to forecast future emissions
- The proportion of each chemical (active and inert ingredients) in the inventory (speciation profile) is uncertain
- Ability to create ozone (reactivity) for many pesticides is unknown; amount of reactive organic gases (ROG) is the critical parameter

20

elor

Current Speciation Profile – Top 10

Chemical	Contribution (%)
Methyl bromide	25.3
Methyl isothiocyanate	17.8
Unidentified active ingredients	13.9
Dichloropropene	11.3
Chloropicrin	8.6
Aromatic 200 solvent	4.8
Xylene range solvent	4.6
Molinate	3.3
Kerosene	1.7
Chlorpyrifos	1.7

Effects of Uncertainties

- Base year has greater use of products with default emission potentials; changes in default values have greater impact on base year, relative to other years
- Base year emissions may be underestimated due to lower reporting compliance, relative to later years
- Base year varies from year to year
 - Base year changes when emission potential data revised
 - Base year changes when "improvements" incorporated
- San Joaquin Valley changed from meeting to not meeting the 1999 interim goal when default changed

31

epr

Next Steps

- Pesticide Emission Inventory
 - Obtain additional data to forecast emissions
 - Develop plan for determining more detailed speciation profiles and estimating ROG
 - Publish the next update, including the 2002 inventory, in late-2003 or early-2004

Next Steps

- Regulatory Activities
 - South Coast and San Joaquin Valley will prepare new SIPs in 2003 that will describe measures to achieve air quality standards by 2010
 - South Coast will not need any additional VOC reductions from pesticides
 - San Joaquin Valley will need approximately 30% more
 VOC reduction from all sources between 1999 and 2010

33

elor

Opportunities for Stakeholders

- Emission Inventory
 - Provide data on emission potentials
 - Provide data on speciation and reactivity
 - Provide data on current and future pesticide use
- Reduction Activities
 - Work with DPR and ARB to develop options for reducing VOC emissions
 - Work with DPR and ARB to adopt practices that reduce VOC emissions

Questions/Additional Information

Randy Segawa
Senior Environmental Research Scientist
Department of Pesticide Regulation
PO Box 4015
Sacramento, CA 95812-4015
Phone: (916) 324-4137

Fax: (916) 324-4088 Email: <u>rsegawa@cdpr.ca.gov</u>

Web Page: www.cdpr.ca.gov
Programs and Services
Volatile Organic Compounds Emissions Project